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A problem of the theory of elasticity for a strip containing rigid inclusions is considered. The faces of the 

strip are supported without friction by a rigid base and the inclusions are loaded by forces perpendicular to 

the faces of the strip, which leads to the appearance of a section of the strip detached from one of the 

supporting surfaces, in which case the problem becomes a strictly mixed one. We use the method developed 

in [l] for non-mixed problems in the case of non-canonical domains. It is based on the construction of 

matrix-valued Green’s functions corresponding to simpler classical boundary value problems for canonical 

domains with subsequent reduction of the boundary value problems for non-canonical domains to the 

solution of integral equations. 

The method was first discussed for strictly mixed problems taking Laplace’s equation as an example. It 

was then applied to contact problems of the theory of elasticity, including the case when the contact zones 

are unknown in advance. 

1. LET 0(--m <x< m; Ocyc~) (Fig. 1) be a uniform elastic strip with Lame coefficients A and lk 
that lies between two non-deformable half-planes y <O and y>rr. It is assumed that there is no 
friction on the lines of contact. The upper boundary of the strip is partially detached from the 
half-plane y>a as a result of a vertical displacement of a pair of absolutely rigid inclusions inside 
the strip. 

By virtue of the symmetry of the problem with respect to the axis x = 0, the displacement vector 

u (5, Y) = 1% (z, Y), 112 (2, !/)P 

of the points of the half-strip R (0 sx < m ; 0 c y < n) is determined by the following system of Lame 
equations and the corresponding boundary conditions: 

FIG. 1. 
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LU = 0 

u1 =-: 0, ‘txy = L) for 5 = 0; uy -= 0. ryr = C) for y = 0 

u,=O for z>n; cry = 0 for .T < f?, rUX .= 0 for j/ == 3X 

u1 = 0, uz = H =:= eonst for (.c, y) E I? 

(L is the Lame linear differential operator for the plane problem of elasticity theory and l? is the 
contour of the inclusion). The point x = a at which the type of the boundary conditions on the upper 
edge of the half-strip changes is unknown and is to be determined along with the components of the 
stress-strain state of the strip. 

Problems concerned with the solvability of strictly mixed boundary value problems of elasticity 
theory for a strip, the differential properties of the solutions, and the behaviour of the solutions both 
at infinity and at the points at which the type of boundary conditions changes have been investigated 
in [2]. The solution of problem (l.l), (1.2) has continuous first-order and second-order partial 
derivatives everywhere in R, except, of course, at the points where the type of boundary conditions 
changes. 

We shall solve the problems in two stages. First, we shall consider the corresponding problem 
with fixed a, and we shall then determine a, e.g. from the continuity conditions 

u&2_, 7r) = q‘(cz+, lr) = 0 (1.3) 

for the a,, component of the stress tensor at that point. 
We will extend the definition of the component u2 of U for y = n in the interval [0, a) by means of 

a continuous, triply differentiable function q(x), which leads to the relations 

I! 1 = 0, TX@ = 0 for 5 = 0 

u2 = 0, ‘cyx = 0 for y = 0; U, =L 6) (x), rU, == 0 for y =T JI 
(1.4) 

74 = 0, up = N = cons1 for (x, y) E P 

CD (X) = v) (2) ]1 -- 6, (X - a)l 

[6,(x - a) is the Heaviside function]. 
It is obvious that for the conditions u,’ (0, y) = 0 and U&X, V) = 0 to be satisfied for a 6.x < ~0, it is 

necessary to set 

cp’ (0) = 0, Cp (n) = 0 (1.5) 

Henceforth we shall express the solution of problem (1.4) for system (1.1) in the form 

u=v+s v :=- v (5, M) -= I% (G Y). vg (I, ?/)lP (1.6) 
s = s (X, y) = I--y@’ (X) / (%I), yQ, (X) / nl’ 

Thus, setting (p’(a) = 0, we can write 

L.V = F v, ===O, .G,~=O for ;c=O (l-7) 

up =L 0, ells = 0 for y = 0, y = rc 

1’1 = y@ (z) / (2n), I’? = H - y@ (5) i n for (x, y) 63 r 

for V, where F = F(x, y) is a vector-valued function with components 
(1.8) 
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fl cc Y) = @J-f-l P” L 2lL) y2 {q?(X) [I - 6” (X - a)l - 

- C$ (a) 6 (z - a)} - n--‘hyl’ (.r) 11 - a,, (.r - a)l 

f2 (.r, y) rzx n-‘hy {cp” (x) I I - 6,, (x - a)l} 

[6(x - a) is the Dirac delta function]. 
Using Green’s matrix 

C (X, y; E, tl) = (Gij (X, Y: E* q)) (i, i =: 1. 2) 

of the homogeneous boundary value problem corresponding to (1.7) and (1.8), the vector V can be 
represented by the sum of potentials 

where the latter term takes into account the influence of the inclusion. 
The density 

N (z, y) = Iv, (x, Y). 2’2 (~7 Y)]’ 

of the contour potential is a vector formed by unknown integrable functions on I’. The expressions 
for the elements G, of Green’s matrix have been obtained in [3]. 

Integrating the first term on the right-hand side of (1.9) with respect to q, we can, in accordance 
with (1.6), represent the components of U in the form 

Ul (T Y) = - ^r {a thOT’ (0 [I - 6, (5 - a)1 - [+ the + 
0 

++_p+ gu"cos ky ] p (8 11 - 60 (5 - aI1 - 6 (a) 6 (E - 4) + 

cos ky cp” (Q [I -ho (E - a)]) dE + I, - (24-l CD1 (z) y2 
(1.10) 

u2 (2-Y y) = - ~{-~~~g2rnsinky x 
0 

x {cp” (E) [I - 60 (E - a)]- cp” (4 6 (E - all + 

++ c (- lJk - g22n sin kycp” (5) [1 - 6, (E - 
k 4lj 4 + 12 

li=S[G,1(~,~;5,d~1(E,rl)+Giz(5,~;E,~)~2(E,rl)ldr(~~rl)~ i-1,’ 
r 

Here gij” = gij”(x, e) are the coefficients of the trigonometric expansions of the elements G, of 
Green’s matrix [3], p = X + 2t~_, and the sums are taken with respect to k from k = 0 to k = 00. If one 
applies the integration by parts to those terms in (1.10) that contain cp’ (5) and q”‘(e) and takes the 
sum of those trigonometric series for which this can be done, one can obtain the expression 

U (5, Y) = 5 R (~9 Y 9 E, 4 cp” (8 dE + 5 G (~9 Y; ET rl) N 6 rl) dr 6 rl) 
0 r 

(1.11) 
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~1 ix, Y, E, 4 = T, (2, Y, f) i- T, (5, Y, -4) + T, (x, El + T, (3. Y, Et 4 
~2 (x, Y, E, a) = T4 (x, Y, E) + T4 k Y, 4) + n--K, (2, E. 4 Y 

T, (5, Y, %) = &{-f- t~+~)[l~+~I--~t2(ch)~+~)+cosy))l~ 

+ 2 sign (x + E) 2 (- ‘)%os kg @l~+&l} ; 

T,(G:,) = 
n/6 - hE3(23$), E < 2 
o 

h_htp 
%>X 

T, (xc, y, E) -MC, (%b a)/($)~ 5 < a 
Ts(~y,t,af = 

~U2~(2~~), $>a 

Next we use the substitution cp”(x) = +(x) and we require that the representation (1.11) complies 
with the last three boundary conditions in j1.2). Then we obtain the system of integral equations 

(1.12) 

i 
6i, .ZZ 

10, i===l 

1 1, i--2 i 
with respect to the unknown functions Jl(x), vi@, y). Here we use the notation introduced above 
and we also introduce the following new notation 

NIX (G Y. E, a) = T,, (z, Y, E) 4- I’,, (x, y. -E) - k (r~J3)-~ K, (x, E. a) 

t*2u (= Y, L 4 = T,, (2, y, 5) + T2@ (5. Y, 4) + n-l& (t, ET U) 
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The kernels of the equations of system (1.12) have weak singularities, which enables one to apply 
the natural regularization method based on separating the singularities in a kernel by the use of the 
Krylov-Bogolyubov method [4] when solving (1.12). In this case the step h of the partition of 
integration domain serves as the regularization parameter and can be chosen by means of a 
numerical experiment. 

We introduce a parameterization of the points (x, y ) of r with the aid of the relations 

I = Z (t). y =L ZJ (t) 1 ; m= t (T), '1 = I/ (T). t, ,-, t, T :,< t, 

Then, dividing [0, a) and I into p and m equal parts, respectively, we can approximate (1.12) by a 
regular system of linear algebraic equations with respect to the approximate values zi of the 
unknown functions +(x), +(x, y), and vz (x, y) at the middle points of the intervals of the partitions: 

Zj = 
i 

I 

p+111 

jzI Bij’j z qi 

$(tj)+ j = I,%,... p 

V1(Z(Tj_p)r y(Tj-p)), _i-ji’Tlf P+e,**,p+m 

vq (x (T j-p-m), y (Tj-p-m )h i = 11 + m + 1, 

p -t m -k 2,. . ., p + 2m 

I O, i = 1,2,. . ., p I m 

(1.13) 

qi” \ H, i=p+m+l, p-m-I-2 ,..., pi+2m 

The computation of the diagonal elements B, of the matrix of system (1.13) involves improper 
integrals of the form 

xi 

s 
In(l--Xp(-_Isi-_jI))dj 

xi-W2 

which we can evaluate by approximating the argument of the logarithm by the linear part of its 
Taylor expansion. 

By computing the characteristics of the stress-strain state of the half-strip R using the 
approximate solution of (1.12) and determining, with the aid of (1.3), the coordinate x = a of the 
point of detachment of the half-strip from the support, we can finally obtain the picture of the 
stress-strain state of the half-strip under investigation. 

2. Let us state some results of the computations based on the method described. 
Figure 2 shows the displacement of the upper boundary of the elastic strip loaded by two symmetrically 

applied concentrated mass forces normal to the horizontal boundaries of the strip for various locations of the 
points of application of the forces. It is of interest to note that the mutual influence of the forces virtually 
disappears as the two points of application of the forces move away from each other in the horizontal direction 
so that the distance between them becomes at least twice as large as the width of the strip (we recall that the y 
axis in this formulation of the problem is an axis of symmetry for the field under investigation, which means that 

FIG. 2. 
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FIG. 3. 

an elastic strip with two forces acting upon it is considered). In other words, for a single force, the distance 
between the points of detachment of the upper edge of the strip and the point of application of the force is 
approximately equal to the width of the strip. 

In Fig. 3(a) we show diagrams of the uY component of the stress tensor on the lower edge of the strip for 
various values x0 of the coordinate of the point of application of the force (curves 1-5 correspond to x0 = 0; 0.5; 
1; 2; 3). The following fact is worthy of note. In the case where the forces are sufficiently far away from the y 
axis (curves 4 and 5), if the rn~irn~ of the curve is attained at the point below the point of application of the 
force, then the maximum moves towards the axis of symmetry as the forces move closer to each other. The 
diagrams of the a,, component of the stress tensor on the line x = 0 are shown in Fig. 3(b) for the same 
configurations of the points of application of the forces, The virtual absence of stress of x0 = 3 (curve 5) 
provides yet another confirmation of the fact that the mutual influence of the forces is significant to some 
degree only if the distance between them is less than twice the width of the strip. 

The stress and displacement fields in an elastic strip under the conditions modelled by problem (1.2) are 
shown in Fig. 4. The deformed coordinate mesh of the strip is shown in the right upper corner. The left upper 
corner, the left lower corner, and the right lower corner present the stress fields T,,,, umax, and (Tmin, 
respectively. An analysis of these fields enables us to conclude that, in particular, the zone lying directly below 
the inclusion is subjected to the greatest strain. Obviously, this is where one should expect zones of plasticity 
and crack formation to appear in the first place under real conditions. Strong compressive stress is also present 
in the vicinity of the origin of the system of coordinates. We also note that, although the stress level above an 
inclusion is much lower than that under consideration (which is, obviously, natural), the form of its distribution 
is interesting because of the presence of zones of compressive as well as tensile stress. 

It follows that the foramlism of Green matrices is an efficient method for solving problems that involve elastic 
bodies detached from a rigid support. 

t 
FIG. 4. 
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One-dimensional integral equations of the second kind are constructed in order to determine the asymptotic 

behaviour of the solutions of the boundary value problems of potential theory and the theory of elasticity in 

the vicinity of conical points on the boundary surface. An algo~thm for solving the problems is described 

and computational results for model examples are presented. 

As A RESULT of studying the solutions of the boundary value problems for elliptic equations in the 
vicinity of conical points on the boundary surface it has been shown [l] that, in any domain of this 
type, the solution can be represented as the sum of an infinitely differentiable function and an 
asymptotic series, each term of which is a solution of the homogeneous boundary value problem for 
an infinite cone formed by the half-lines tangent at the conical point. The solutions in question 
(eigenfunctions) are determined only by the local structure of the conical surface and the type of 
boundary conditions. Naturally, the coefficients multiplying the solutions depend on the general 
configuration of the domain and the values of the boundary conditions. It is obvious that the 
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